Material Efficiency: The case of devices for IoT

HIDEO OHNO

PROFESSOR AND DIRECTOR RESEARCH INSTITUTE OF ELECTRICAL COMMUNICATION ALSO WITH CENTER FOR SPINTRONICS INTEGRATED SYSTEMS TOHOKU UNIVERSITY, JAPAN

Market (a university professor's view)

MATERIALS MATERIALS

Market (a university professor's view)

IoT Devices

Sensors

Communi cation

Limited bandwidth: processed data for upload
Maintenance free: energy efficiency

4

Storage

Processing

► IoT devices have to be

- small = material efficient
- smart = information processing capability
- energy efficient = low power/standby power free

Spintronics does it all (Magnetic Tunnel Junction: MTJ)

- Spintronics devices can
 - ✓ sense magnetic fields,
 - ✓ generate high frequency for communication, and
 - ✓ provides nonvolatile low-power processing
- They are small and can be made nonvolatile
 - Magnetic Tunnel Junction (MTJ): key spintronics device

MTJ-based magnetic sensors

MTJ based field sensor vs. MI sensors

FeCoSiB wire

MTJ based magnetic field sensor

7

versus

Size: $\sim \mu m^2$

Diameter: ~20 µm

Taken from http://www.aichi-mi.com/mitechnology/%E5%8E%9F%E7%90%86/ (Japanese)

High Frequency Generation and 8 detection by Magnetic Tunnel Junction

Taken from S. Tamaru et al., J. Appl. Phys. 115, 17C740 (2014).

Crystal oscillator

Size: ~ mm

https://en.wikipedia.org/wiki/Crystal_oscillator

MTJ/CMOS Nonvolatile VLSIs

Battery-free: Can we get there?

Energy Harvesting • 300 μW: Solar cell with room light 100 μW: Vibration Intermittent Sensing 10×10 sec-sensing a day **Distribution of Power** • 200 μW Sensing: 20 µW • RF: 80 µW 100 µW • Microcontroller:

200 μW 9.0 8.0 7.0 6.0 ^ower (mW) 5.0 4.0 3.0 2.0 1.0 0.0 Without spin Without spin With (today) (5vrs later)

High performance nonvolatile memory element: Perpendicular MgO-CoFeB MTJ

S. Ikeda et al., Nature Mat. 9, 721 (2010)

Magnetic Tunnel Junction - bulk versus interface -

12

Materials Efficiency (Cost of material)

Recycling at the level of ¹³ manufacturing tool: efficiency

SUMMARY

- Spintronics device (Magnetic Tunnel Junction) provides key functionalities required for IoT: sensing, communication, and information processing/storage
- It is material efficient and becoming more so with newly developed device structure (interface)
- Retrieving unused materials from manufacturing tools under development for further increasing the material efficiency

Next: Wireless Passive Sensor Technology, Donald C. Malocha